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Rafael Bombelli (Italian 1526 - 1572)
Recall that Cardano, in attempting to solve the cube equals cosa plus number case
x3 = mx + n, arrived at a negative sign under the radical. Tartaglia rebuked
him, claiming that his methods were ”totally false”. Cardano, in attempting to go
forward with this, eventually claimed that such considerations were ”as subtle as
they are useless”.

However, in his 1572 treatise L’Algebra, Rafael Bombelli showed that roots of
negative numbers have great utility indeed. Consider the depressed cubic x3 =
15x + 4. Applying the method of Tartaglia and Cardano, we set m = −15 and
n = 4. If x = t − u, then 3tu = m = −15 and t3 − u3 = n = 4, so that
u3 = − 125

t3 , and t3 + 125
t3 = 4. Then t6 − 4t3 − 125 = 0, and by the quadratic

formula, t3 = 2 +
√
−121 = 2 + 11

√
−1, whence u3 = −2 + 11

√
−1, and x =

3
√

2 + 11
√
−1− 3

√
−2 + 11

√
−1.

Now Bombelli, undeterred by the negative sign under the radical, wished to find
a number whose cube was 2 + 11

√
−1. Having a ”wild thought”, he assumed that

such a number would be of the form a+ b
√
−1. This produces

(a+ b
√
−1)3 = (a3 − 3ab2) + (3a2b− b3)

√
−1 = 2 + 11

√
−1,

from which we conclude that a3 − 3ab2 = 2 and 3a2b− b3 = 11. The first equation
gives a(a2−3b2) = 2. Further assuming that a and b may be integers, and realizing
that the only factors of 2 are 1 and 2, Bombelli discovered that a = 2 and b = 1
solved the first equation. Since they also solve the second, he found that (2 +√
−1)3 = 2 + 11

√
−1. Thus x = (2 +

√
−1)− (−2 +

√
−1) = 4.

By considering
√
−1 as an acceptable quantity, Bombelli found a real solution

to the cubic equation. This legitimized complex numbers as a legitimate area of
study.

John Wallis (English 1619 - 1703)
Attempts to view complex solutions to quadratic equations as points on a plane.

Abraham de Moivre (French 1667 - 1754)
Used complex numbers in his formula

(cos θ + i sin θ)n = cosnθ + i sinnθ.

Leonhard Euler (Swiss 1707 - 1783)
Understood DeMoivre’s formula as giving solutions to the equation xn − 1 = 0,
viewed as vertices on a regular polygon.
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Carl Friedrich Gauss (German 1777 - 1855)
Completed the geometric interpretation of the complex number x+ yi as the point
(x, y) on the complex plane. Proved the Fundamental Theorem of Algebra.

Augustin-Louis Cauchy (French 1789 - 1857)
Formalized complex analysis and discovered many of its fascinating theorems.

1. Complex Algebra

Define addition and multiplication on the set R2 by

(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2)

and
(x1, y1) · (x2, y2) = (x1x2 − y1y2, x1y2 + x2y1).

Let C denote the set R2 together with this addition and multiplication; we call C
the set of complex numbers.

Let f : R → C be given by f(x) = (x, 0). This embeds the real line into C, in
a manner which preserves addition and multiplication; we call the image the real
axis, and identify R with its image.

Let i = (0, 1). Then i2 = i · i = (−1, 0) = −1. We call {(0, y) | y ∈ R} the
imaginary axis.

Every element of C can be written as x + iy in a unique way, where x, y ∈ R;
that is,

C = {x+ iy | x, y ∈ R, i2 = −1}.
One can show that these operations have the following properties:

(F1) a+ b = b+ a for every a, b ∈ C;
(F2) (a+ b) + c = a+ (b+ c) for every a, b, c ∈ C;
(F3) there exists 0 ∈ C such that a+ 0 = a for every a ∈ C;
(F4) for every a ∈ C there exists b ∈ C such that a+ b = 0;
(F5) ab = ba for every a, b ∈ C;
(F6) (ab)c = a(bc) for every a, b, c ∈ C;
(F7) there exists 1 ∈ C such that a · 1 = a for every a ∈ C;
(F8) for every a ∈ Cr {0} there exists c ∈ C such that ac = 1;
(F9) a(b+ c) = ab+ ac for every a, b, c ∈ C.

Together, these properties state that C is a field. Note that

• 0 = 0 + i0;
• 1 = 1 + i0;
• −(x+ iy) = −x+ i(−y) = −x− iy;

• (x+ iy)−1 = x−iy
x2+y2 .
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2. Complex Geometry

Let z = x+ iy be an arbitrary complex number. The real part of z is <(z) = x.
The imaginary part of z is =(z) = y. We view R as the subset of C consisting of
those elements whose imaginary part is zero.

We graph complex number on the xy-plane, using the real part as the first coor-
dinate and the imaginary part as the second coordinate. Under this interpretation,
the set C becomes a real vector space of dimension two, with scalar multiplication
given by complex multiplication by a real number. We call this vector space the
complex plane.

Thus the geometric interpretation of complex addition is vector addition.
Let z = x+ iy be an arbitrary complex number. The conjugate of z is z = x− iy.

This is the mirror image of z under reflection across the real axis. The modulus of

z is |z| =
√
x2 + y2. This is the length of z as a vector. Note that zz = |z|2. The

angle of z, denoted by ∠(z), is the angle between the vectors (1, 0) and (x, y) in the
real plane R2; this is well-defined up to a multiple of 2π.

Let r = |z| and θ = ∠(z). Then x = r cos θ and y = r sin θ. Define a function

cis : R→ C by cis(θ) = cos θ + i sin θ.

Then z = r cis(θ); this is the polar representation of z.
Recall the trigonometric formulae for the cosine and sine of the sum of angles:

cos(A+B) = cosA cosB − sinA sinB

and
sin(A+B) = cosA sinB + sinA cosB.

Let z1 = r1 cis(θ1) and z2 = r2 cis(θ2). Then

z1z2 = r1r2(cos θ1 + i sin θ1)(cos θ2 + i sin θ2)

= r1r2((cos θ1 cos θ2 − sin θ1 sin θ2) + i(cos θ1 sin θ2 + sin θ1 cos θ2))

= r1r2(cos(θ1 + θ2) + i sin(θ1 + θ2))

= r1r2 cis(θ1 + θ2).

Thus the geometric interpretation of complex multiplication is:

(a) The radius of the product is the product of the radii;
(b) The angle of the product is the sum of the angles.

In particular, if |z| = 1, then z = cis(θ) for some θ, and zn = cis(nθ). Restate
this as

Theorem 1 (DeMoivre’s Theorem). cisn(θ) = cos(nθ) + i sin(nθ).

Example 1. Let f : C → C be given by f(z) = 2z. Then f dilates the complex
plane by a factor of 2.

Example 2. Let f : C → C be given by f(z) = iz. Then f rotates the complex
plane by 90 degrees.

Example 3. Let f : C → C be given by f(z) = (1 + i)z. Note that |1 + i| =
√

2

and ∠(1 + i) = π
4 . Then f dilates the complex plane by a factors of

√
2 and rotates

it by 45 degrees.
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3. Complex Powers and Roots

Let z = r cis(θ) and let n ∈ N. Then zn = rn cis(nθ).
The unit circle in the complex plane is

U = {z ∈ C | |z| = 1}.
Note that if u1, u2 ∈ U, then u1u2 ∈ U.

Let ζ ∈ C and suppose that ζn = 1. We call ζ an nth root of unity. If ζm 6= 1
for m ∈ {1, . . . , n− 1}, we call ζ a primitive nth root of unity.

Let ζ = cis( 2π
n ). Then ζn = cis(n 2π

n ) = cis(2π) = 1; one sees that ζ is a primitive

nth root of unity. Thus primitive roots of unity exist for every n. As m ranges from
0 to n − 1, we obtain distinct complex numbers ζm, all of which are nth roots of
unity. These are all of the nth roots of unity; thus for each n ∈ N, there are exactly
n distinct nth roots of unity.

If one graphs the nth roots of unity in the complex plane, the points lie on the
unit circle and they are the vertices of a regular n-gon, with one vertex always at
the point 1 = 1 + i0.

Let z = r cis(θ). Then z has exactly n distinct nth roots; they are

n
√
z = n

√
rζmn cis(

θ

n
), where m ∈ {0, . . . , n− 1}.

The Fundamental Theorem of Algebra states that every polynomial with complex
coefficients has a root in the complex numbers.
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4. Complex Analysis

Let f : C→ C. We say that f is continuous at z0 if for every ε > 0 there exists
δ > 0 such that |z − z0| < δ ⇒ |f(z)− f(z0)| < ε.

We say that f is differentiable at z0 if the limit

f ′(z0) = lim
z→z0

f(z)− f(z0)

z − z0
exists.

Complex differentiability has some amazing consequences; for example, it can be
shown that every complex differentiable function is analytic.

We use the Taylor series expansion for several real transcendental functions in
order to define their complex counterparts.

Define the complex exponential function

exp : C→ C by exp(z) =

∞∑
n=0

zn

n!
.

Define the complex sine function by

sin : C→ C by sin(z) = z − z3

3!
+
z5

5!
− z7

7!
+ . . .

Define the complex cosine function by

cos : C→ C by cos(z) = 1− z2

2!
+
z4

4!
− z6

6!
+ . . .

Note that exp, sin, and cos, when restricted to R ⊂ C, are defined so as to be
consistent with other definitions of these real functions.

Define log : C→ C to be an inverse function of exp. Let w, z ∈ C. We define wz

by

wz = exp(z log(w)).

Thus exp(z) = ez.
Euler evaluated exp(iz), separating the real and imaginary parts, and found

exp(iz) =
∞∑
n=0

(iz)n

n!

= 1 + iz + i2
z2

2!
+ i3

z3

3!
+ i4

z4

4!
+ i5

z5

5!
+ i6

z6

6!
+ i7

z7

7!
+ . . .

= (1− z2

2!
+
z4

4!
− z6

6!
+ . . . ) + i(z − z3

3!
+
z5

5!
− z7

7!
+ . . . )

= cos z + i sin z.

In particular, if z = θ ∈ R, we have

Theorem 2 (Euler’s Theorem). Let θ ∈ R. Then

eiθ = cis(θ).

Letting θ = π, we get the beautiful

eiπ + 1 = 0,

a formula that relates the four most important constants in mathematics.
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5. Sum of Square Reciprocals

5.1. Historical Background. Recall the triangular numbers

n∑
i=1

i =
n(n+ 1)

2
.

Leibnitz was challenged by Huygens to find the sum of their reciprocals. First
factor out a 2 from all the terms 2

n(n+1) ; then compute

∞∑
n=1

1

n(n+ 1)
=

∞∑
n=1

[ n+ 1

n(n+ 1)
− n

n(n+ 1)

]
=

∞∑
n=1

[ 1

n
− 1

n+ 1

]
= (1− 1

2
) + (

1

2
− 1

3
) + (

1

3
− 1

4
) + (

1

4
− 1

5
) + . . .

= 1− (
1

2
− 1

2
)− (

1

3
− 1

3
)− (

1

4
− 1

4
)− . . .

= 1.

Thus the sum of the reciprocals of the triangular numbers is 2.
Jacob Bernoulli, who knew that the harmonic series

∑
1
n diverges, then realized

that
∞∑
n=1

1

n2
< 1 +

∞∑
n=1

1

n(n+ 1)
= 2.

Euler was able to compute the value to which the sum of the reciprocals of the
square natural numbers converges.

5.2. Polynomials with Specified Roots. Let a1, . . . , an ∈ C. We wish to con-
struct a canonical polynomial with these zeros. One way is to select the polynomial
to be monic; that is, to have 1 as the leading coefficient. The polynomial with this
property is just

f(x) =

n∏
i=1

(x− ai).

In this case, we know that the coefficients of f(x) are symmetric functions of the
zeros. However, we may also choose to normalize the polynomial by selecting the
constant coefficient to be 1. For this case, set

(†) g(x) =

n∏
i=1

(1− x

ai
).

The coefficient of x in g(x) is

(∗)
n∑
i=1

−1

ai
.
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5.3. Euler’s Method. Let g(x) = sin x
x ; the power series expansion for g(x) is

arrived at by taking the Taylor series for sinx and dividing it, term by term, by x,
to obtain:

g(x) = 1− x2

3!
+
x4

5!
− x6

7!
+ . . . .

This has the appearance of a polynomial whose constant coefficient in 1, except
that it infinitely many terms. Euler, being undeterred by this last fact, assumed
that g(x) could be written as an infinite product of linear terms as in equation (†).

Note that g(0) = 1; otherwise, the zeros of g(x) are exactly those of sinx; they
are Z = {±π,±2π,±3π, . . . }. Thus Euler arrives at

g(x) =
∏
z∈Z

(1− x

z
)

=
(

(1− x

π
)(1 +

x

π
)
)(

(1− x

2π
)(1 +

x

2π
)
)
· · ·
(

(1− x

nπ
)(1 +

x

nπ
)
)
· · ·

=
(

1− x2

π2

)(
1− x2

4π2

)
· · ·
(

1− x2

n2π2

)
· · ·

=

∞∏
n=1

(
1− x2

n2π2

)
.

Multiplying out this infinite product, Euler finds the coefficient of the x2 term, and
equates it to the coefficient of the x2 term of the power series expansion of g(x), as
in equation (∗), to get

− 1

3!
=

∞∑
n=1

−1

n2π2
.

Multiply both sides by −π2 to arrive at the mysterious result
∞∑
n=1

1

n2
=
π2

6
.
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